Phone: 0744-2429714
Website: www.vpmclasses.com
Mobile: 90012971 11, 9829567114,9001297243
E-Mail: vpm classes@yahoo.com /inf o@vpmclasses.com Address: 1-C-8, Shee la Chowdhary Road, SFS, TA LWANDI, KOTA, RAJA STHA N, 324005

Page 1

EIGEN V ALUES

Let $A=\left[a_{i j}\right]_{n \nless n}$ be any n rowed square matrix and λ is an indeteminate.
I A - λ I is called characteristic matrix.
$|A-\lambda|=0$ is called characteristic equation and roots of this equation is called the characteristic
roots or charactenistic values or eigen values or latent roots or proper values of the matrix A.

Note. The set of the eigen values of Ais called the spectrum of A.

Eigen vectors

If λ is a characteristic root of an $n \times n$ matrix A, then a non-zero vector X such that $A X=\lambda$
X is called a characteristic vector or eigen vector of A corres ponding to the characteristic root λ.

Remark. 1. λ is a characteristic root of a matrix A if any only if there exists a non- zero vector X such that $A X=\lambda X$.
2. If X is a characteristic vector of a matrix A corresponding to the characteristic value λ
,then kx is also a characteristic vector of A corresponding to the same characteristic value λ.

Here k is any non-zero scalar.
3. The characteristic vectors ∞ orresponding to distinct characteristic roots of a matrix are linearly independent.

Algebraic Multiplicity

If 1_{1} be a eigen value of order t of the $|A-\lambda I|=0$, then t is called the $A M$ (algebraic multiplicity) of λ_{1}

Geometric Multiplicity

If s be the number of L.I eigen vector corresponding to the eigen value λ_{1}, then s is called G.M (geometric multiplity) of λ_{1}.

Note: G.M. \leq A.M.

Nature of the eigen value of the special types of matrices

1. The eigen value of a Hemitian matrix are all real.
2. The eigen value of a real symmetric matrix are all real.
3. The eigen value of a skew-symm etric matrix are either pure maginary or zero, for every matrix is Skew-Hermitian.
4. The eigen values of unitary matrices are unit modulus.
5. The eigen roots of an orthogonal matrix are of unit modulus.

Ex. Show that the eigen value of a triangular matrix are just the diagonal elements of the matrix

Let $A=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right]$ triangular matrix of order 3
$|A-\lambda| \left\lvert\,=\left[\begin{array}{ccc}a_{11}-\lambda & a_{12} & a_{13} \\ 0 & a_{22}-\lambda & a_{23} \\ 0 & 0 & a_{33}-\lambda\end{array}\right]\right.$

$$
=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)=0
$$

The roots of the equation $|A-\lambda|=0$ are a_{11}, a_{22}, a_{33}

The Cayley-Hamilton theorem

Every square matrix satisfies its characteristic equation, i.e., if for a square matrix A of order n.
$|A-\lambda|=(-1)^{n}\left[\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\ldots+a_{n}\right]$ then the matrixequation
$x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n} I=0$ is satisfied by $X=A$.
i.e., $A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\ldots .+a_{n} I=0$

Cor.1. If A be a non-singular matrix . $|A| \neq 0$.
Premultiplying by A^{-1}
$A^{n-1}+a_{1} A^{n-2}+a_{2} A^{n-3}+\ldots+a_{n-1} I+a_{n} A^{-1}=0$
or $\quad A^{-1}=-\left(\frac{1}{a_{n}}\right)\left(A^{n-1}+a_{1} A^{n-2}+\ldots+a_{n-1} 1\right)$
Cor.2. If m be a positive integer such that $m \geq n$, then multiplying the results by A^{m-n}

$$
A^{m}+a_{1} A^{m-1}+\ldots+a_{n} A^{m-n}=0 .
$$

Eigen values and eigen vectors

If V is a vector space over the field F and T is a linear operator on V . An eigen value of T is a
scalar c in F such that there is a non-zero vector $\alpha \in \mathrm{V}$ with $\mathrm{T} \alpha=\mathrm{c} \alpha$ If c is an eigen value of

T , then
(a) Any α such that $\mathrm{T} \alpha=\mathrm{c} \alpha$ is called eigen vector of T associated with the eigen value C;
(b) The collection of all c such that $\mathrm{T} \alpha=\mathrm{c} \alpha$ is called the eigen space associated with c .

Eigen value of matrix Aover F

If A is an $n \times n$ matrix over the field F, an eigen value of $A o v e r F$ is a scalar c in F such that the matrix $(\mathrm{A}-\mathrm{CI})$ is singular (not invertible.)

Eigen polynomial

$$
f(c)=|A-c l| .
$$

Diago nalizable

If T is a linear operator on the finite dimensional space V . Then T is diagonalizable if there is a
basis for V each vector of which is an eigen vector of T.

Some Important Theorems

1 If T is a linear operator on a finite dimensional space V and c is any scalar. Then following are
equivalent
(a) c is an eigen value of T
(b) The operator ($\mathrm{T}-\mathrm{CI}$) is singular (not invertible)
(c) $\operatorname{det}(T-C I)=0$

2 Similar matrices have the same eigen polynomial.
3 If $T \alpha=c \alpha$ and F is any polynomial, then $F(T) \alpha=F(c) \alpha$.
4 Suppose T is a linear operator on the finite, dimensional space $\mathrm{V}, \mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{k}}$ are k -distinct eigen

Values of T and W are the space of eigen vector associated with the eigen value c. If
$W=W_{1}+W_{2}+\ldots+W_{k}$, then $\operatorname{dm} W=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\ldots+\operatorname{dim} W_{k}$. In fact, if B_{i} is an ordered basis for W_{i} then $B=\left(B_{i}, \ldots, B_{k}\right)$ is an ordered bas is for W.

5 If T is a linear operator on finite dimensional values of T and W_{i} is a null space of ($T-c_{i}$ I).

The following are equivalent :
(i) Tis diagonalizable
(ii) The eigen polynomial for T is $F=\left(x-c_{i}\right)^{d_{i}} \ldots\left(x-c_{k}\right)^{d_{k}}$ with $\operatorname{dim} W_{4}=d_{i}, i=1, \ldots .$.
(iii) $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}_{1}+\operatorname{dim} \mathrm{W}_{2}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}}$.

Theorem. If α is a characteristic vector of T corresponding to the characteristic value c , then $\mathrm{k} \alpha$
is also a characteristic vector of T corresponding to the same characteristic value c. Here k is
any non zero scalar.
Proof. Since α is a characteristic vector of T corresponding to the characteris tic value c,
Therefore $\alpha \neq 0$ and

$$
\begin{equation*}
T(\alpha)=c \alpha . \tag{1}
\end{equation*}
$$

If k is any non-zero scalar, then $k \alpha \neq 0$.
Also $\mathrm{T}(\mathrm{k} \alpha)=\mathrm{k}(\mathrm{\alpha})=\mathrm{k}(\mathrm{c} \alpha)=(\mathrm{kc}) \alpha$

$$
=(\mathrm{ck}) \alpha=\mathrm{c}(\mathrm{k} \alpha) .
$$

$\therefore \mathrm{k} \alpha$ is a characteristic vector of T corresponding to the characteristic value c .
Thus corresponding to a characteristic value c , there maycorrespond more than one
Characteristic vectors.

Theorem. If α is a characteristic vector of T , then α cannot correspond to more than one characteristic values of T .

Proof.Let α be a characteristic vector of T corresponding to two distinct characteristic values C_{1} and c_{2} of T . Then

$$
\mathrm{T} \alpha=\mathrm{c}_{1} \alpha
$$

and

$$
\mathrm{T} \alpha=\mathrm{c}_{2} \alpha
$$

$\therefore \quad \mathrm{c}_{1} \alpha=\mathrm{c}_{2} \alpha$
$\Rightarrow \quad\left(\mathrm{c}_{1}-\mathrm{c}_{2}\right) \alpha=0$
$\Rightarrow \quad \mathrm{c}_{1}-\mathrm{c}_{2}=0 \quad[\because \alpha \neq 0]$
$\Rightarrow \quad \mathrm{C}_{1}=\mathrm{C}_{2}=0$

Theorem. Let T be a linear operator on an n-dimensional vector space V and A be the matrix of T relative to any ordered basis B. Then a vector A in V is an eigenvector of T corresponding to its eigenvalue c if and only if its coordinate vector X relative to the bas is B is an eigen-vector of A corresponding to its eigenvalue c.
Proof. We have

$$
[\mathrm{T}-\mathrm{cI}]_{\mathrm{B}}=[\mathrm{T}]_{\mathrm{B}}-\mathrm{c}[I]_{\mathrm{B}}=\mathrm{A}-\mathrm{cI} .
$$

If $\alpha \neq \mathbf{0}$, then the coordinate vector X of a is also non-zero.
Now $\quad[(T-C I)(\alpha)]_{B}=[T-c I]_{B}[\alpha]_{B}$

$$
=(\mathrm{A}-\mathrm{cl}) \mathrm{X} .
$$

$$
(T-c I)(\alpha)=0 \text { iff }(A-c I) X=O
$$

or $T(\alpha)=c \alpha$ iff $A X=c X$
or α is an eigenvector of T iff X is an eigenvector of A.
Thus with the help of this theorem we see that our definition of characteristic vector of a matrix
is sensible Now we shall define the characteristic polynomial of a linear operator. Before doing
so we shall prove the following theorem.

Theorem. Let T be anylinear operator on a finite dimensional vector space V , let $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots$, c_{k} be the distinct characteristic values of T , and let W_{i} be the null space of ($\mathrm{T}-\mathrm{cII}_{\mathrm{I}}$). Then the subspace $W_{1}, \ldots . W_{k}$ are independent.Further show that if in addition T is diagonalizable, then V is the direct sum of the subspaces of the subspaces W_{1}, \ldots, W_{k}.

Proof. By definition of W_{i}, we have

$$
\mathrm{W}_{\mathrm{i}}=\left\{\alpha: \alpha \in \operatorname{Vand}\left(\mathrm{T}-\mathrm{c}_{\mathrm{I}}\right) \alpha=0 \text { i.e. } \mathrm{T} \alpha=\mathrm{c}_{\mathrm{i}} \alpha\right\} .
$$

Now let α_{i} be in $W_{i}, i=1, \ldots, k$, and suppose that

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}=0 . \tag{1}
\end{equation*}
$$

Let j be any integer between 1 and k and let

$$
U_{i}=\prod_{\substack{1 \leq i \leq k \\ i \neq j}}\left(T-c_{i} I\right) .
$$

Note that U_{j} is the product of the operators $\left(T-c_{I}\right)$ for $i \neq j$. In other words $U_{j}=\left(T-c_{1}\right)(T-$ C_{2} I)....
($\mathrm{T}-\mathrm{c}_{\mathrm{k}} \mathrm{I}$) where in the product the factor $\mathrm{T}-\mathrm{CI}_{1}$ is miss ing.
Let us find $U_{\alpha}, i=1, \ldots, k$. By the definition of W_{i}, we have $\left(T-c_{i}\right) \alpha_{i}=0$. Since the operators
(T -cI) all commute, being polynomials in T , therefore $\mathrm{U}_{\mathrm{j}} \alpha_{1}=0$ for $\mathrm{i} \neq \mathrm{j}$. Not that for each $\mathrm{i} \neq \mathrm{j}$.
Note that for each $\mathrm{i} \neq \mathrm{j}, \mathrm{U}_{\mathrm{j}}$ contains a factor $\left(\mathrm{T}-\mathrm{c}_{\mathrm{i}} \mathrm{I}\right)$ and $\left(\mathrm{T}-\mathrm{c}_{\mathrm{i}}\right) \alpha_{\mathrm{i}}=\mathbf{0}$.
Also

$$
U_{j} \alpha_{j}=\left[\left(T-c_{1} I\right) \ldots\left(T-c_{k} I\right)\right] \alpha_{j}
$$

C SIR NET, GATE, ITT-JAM, UGC NET , TIFR,IISc, JEST, JNU, BHU , ISM, IBPS, CSAT, SLET, NIMCET, CTET

$$
\begin{align*}
&= {\left[\left(T-c_{1} I\right) \ldots\left(T-c_{k-1}\right)\right]\left[T \alpha_{j}-c_{k} I \alpha_{j}\right) } \\
&= {\left[\left(T-c_{1} I\right) \ldots\left(T-c_{k-1} I\right)\right]\left(c_{j} \alpha_{j}-c_{k} \alpha_{j}\right) } \\
& {\left[\because T \alpha_{j}=c_{j} \alpha_{j} a n d I \alpha_{j}=\alpha_{j}\right] } \\
&= {\left[\left(T-c_{1} I\right) \ldots\left(T-c_{k-1} I\right)\right]\left(c_{j}-c_{k}\right) \alpha_{j} } \\
&=\left(c_{j}-c_{k}\right)\left[\left(T-c_{i} I\right) \ldots\left(T-c_{k-1} I\right)\right] \alpha_{j} \\
&=\left(c_{j}-c_{k}\right)\left(c_{j}-c_{k-1}\right) \ldots\left(c_{j}-c_{1}\right) \alpha_{j} \text {, the factor } c_{i}-c_{j} \text { will be missing. Thus } \\
& U_{j} \alpha_{j}=\left[\underset{\substack{1 \leq i \leq k \\
i \neq j}}{\Pi}\left(c_{j}-c_{i}\right)\right] \alpha_{j} . \quad \ldots(2) \tag{2}
\end{align*}
$$

Now applying U_{j} to both sides of (1), we get

$$
\begin{aligned}
& U_{j} \alpha_{1}+U_{i} \alpha_{2}+\ldots+U_{j} \alpha_{k}=0 \\
\Rightarrow & U_{j} \alpha_{j}=\underline{0} \quad\left[\because U_{j} \alpha_{i}=0 \text { if } i \neq j\right] \\
\Rightarrow & {\left[\prod_{i \neq j}\left(c_{j}-c_{i}\right)\right] \alpha_{j}=0 \quad[b y(2)] }
\end{aligned}
$$

Since the scalars c_{i} are all distinct, therefore the product

$$
\prod_{i \neq j}\left(c_{j}-c_{i}\right)
$$

is a non-zero scalar. Hence $\left[\prod_{i \neq j}\left(c_{j}-c_{i}\right)\right] \alpha_{j}=0$
$\Rightarrow \alpha_{\mathrm{j}}=0$. Thus $\mathrm{aj}=0$ for everyinteger j between 1 and k .
In this way $\alpha_{1}+\ldots+\alpha_{k}=\mathbf{0}$
$\Rightarrow \alpha_{\mathrm{i}}=\mathbf{0}$ for each i. Hence the subspaces $\mathrm{W}_{\mathrm{i}}, \ldots, \mathrm{W}_{\mathrm{k}}$ are independent.

Ex. Let V be a n-dimensional vector spaœ over F. What is the characteristic polynomial of
(i) the identity operator on V ,
(ii) the zero operator on V.

Sol. Let B be any ordered bas is for V .
(i) If I is the identity operator on V , then

$$
[\mathrm{I}]_{\mathrm{B}}=\mathrm{I} .
$$

The characteristic polynomial of $\mathrm{I}=\operatorname{det}(\mathrm{I}-\mathrm{x})$

$$
=\left|\begin{array}{cccc}
1-x & 0 & \ldots & 0 \\
0 & 1-x & \ldots & 0 \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
0 & 0 & \ldots & 1-x
\end{array}\right|=(1-x)^{n} .
$$

(ii) If $\hat{0}$ is the zero operator on V, then $[\hat{0}]_{B}=O$ i.e. fthe null matrix of order n.

The characteristic polynomial of $\hat{\mathbf{0}}=\operatorname{det}(\mathrm{O}-\mathrm{xI})$

$$
=\left|\begin{array}{cccc}
-x & 0 & \ldots & 0 \\
0 & -x & \ldots & 0 \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
. & . & \ldots & \cdot \\
0 & 0 & \ldots & -x
\end{array}\right|=(-1)^{n} x^{n} .
$$

Poisson distribution as a limiting case of the negative Binomial distribution

Negative binomial distribution tends to Poisson distribution as $P \rightarrow 0, r \rightarrow \infty$ such that $r \mathrm{P}=\lambda$ (finite). Proceeding to the limits, we get

$$
\begin{aligned}
\lim p(x) & =\lim _{\binom{x+r-1}{r-1} p^{r} q^{x}=\lim \binom{x+r-1}{x} Q^{-r}\left(\frac{P}{Q}\right)^{x} \quad\left[\operatorname{let} p=\frac{1}{2}, q=\frac{p}{2}\right]} \\
= & =\lim _{r \rightarrow \infty} \frac{(x+r-1)(x+r-2) \ldots(r+1) r}{x!}(1+P)^{-r}\left(\frac{P}{1+P}\right)^{x} \\
& =\lim _{r \rightarrow \infty}\left\{\frac{1}{x!}\left(1+\frac{x-1}{r}\right)\left(1+\frac{x-2}{r}\right) \ldots\left(1+\frac{1}{r}\right) \cdot 1 \cdot r^{x}(1+P)^{-r}\left(\frac{P}{1+P}\right)^{x}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{x!} \lim _{r \rightarrow \infty}\left\{(1+P)^{-r}\left(\frac{r P}{1+P}\right)^{x}\right\}=\frac{\lambda^{x}}{x!} \lim _{r \rightarrow \infty}\left[\left(1+\frac{\lambda}{r}\right)\right]^{-r} \lim _{r \rightarrow \infty}\left(1+\frac{\lambda}{r}\right)^{-x}[\because r P=\lambda] \\
& =\frac{\lambda^{x}}{x!} \cdot e^{-\lambda} \cdot 1=\frac{e^{-\lambda} \lambda^{x}}{x!}
\end{aligned}
$$

which is the probability function of the Poisson dis tribution with parameter ' λ '.

Deduction of moments of negative Binomial distribution from those of Binomial distribution

If we write $p=1 / Q, q=P / Q$ such that $Q-P=1$, then the m.g.f. of negative binomial variate X is
given by :

$$
\begin{equation*}
M_{x}(t)=\left(Q-P e^{t}\right)^{-k} \tag{1}
\end{equation*}
$$

This is analogous to m.g.f. of binomial variate Y with parameters n and p^{\prime}, viz.,

$$
\begin{equation*}
M_{q}(t)=\left(q^{\prime}+p^{\prime} e^{\prime}\right)^{n} ; q^{\prime}=1-p^{\prime} \tag{2}
\end{equation*}
$$

Comparing (1) and (2), we getq' $=\mathrm{Q}, \mathrm{p}^{\prime}=-\mathrm{P}$ and $\mathrm{n}=-\mathrm{k}$
Using the formulae for moments of binomial distribution, the moments of negative binomial distribution are given by:

Mean $=n p^{\prime}=(-k)(-P)=k P$
Variance $=n p^{\prime} q^{\prime}=(-k)(-P) Q=k P Q$

$$
\begin{aligned}
& \mu_{3}=n p^{\prime} q^{\prime}\left(q^{\prime}-p^{\prime}\right)=(-k)(-P) Q(Q+P)=k P Q(Q+P) \\
& \mu_{4}=n p^{\prime} q^{\prime}\left[1+3 p^{\prime} q^{\prime}(n-2)\right]=(-k)(-P) Q[1+3(-P) Q(-k-2)]=k P Q[1+3 P Q(k+
\end{aligned}
$$

2)].

Ex. Given the hypothetical distribution:

No. of cells (x)	$:$	0	1	2	3	4	5
Total							
Frequency (f):		213	128	37	183	1	400

Fit a negative binomial dis tribution and calculate the expected frequendes.
Sol. Let Xbe negative binomial variate with parameters r and p.

$$
\begin{gather*}
\mu_{1}^{\prime}=\text { Mean }=\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}=\frac{273}{400}=0.6825=\frac{\mathrm{rq}}{\mathrm{p}} ; \quad(\mathrm{q}=1-\mathrm{p}) \\
\mu_{2}^{\prime}=\frac{\Sigma \mathrm{fx}^{2}}{\Sigma \mathrm{f}}=\frac{511}{400}=1.2775 \tag{1}\\
\mu_{2}=\mu_{2}^{\prime}-\mu_{1}^{\prime 2}=1.2775-(0.6825)^{2}=0.8117 \tag{2}
\end{gather*}
$$

\therefore Variance $=0.8117=\frac{\mathrm{rq}}{\mathrm{p}^{2}}$
Dividing (1) by (2), we get $p=\frac{0.6825}{0.8117}=0.8408, q=1-p=0.1592$
$\therefore \quad r=\frac{p \times 0.6825}{q}=\frac{0.5738}{0.1592}=3.6043 \simeq 4 \quad$ [From (1)]
Since, r being the number of successes cannot be fractional.

$$
\begin{aligned}
& f_{0}=p^{r}=(0.8408)^{4}=0.49780 .5 \\
& f_{1}=\frac{r+0}{0+1} q f_{0}=r q f_{0}=0.5738 \times 0.5=0.2869 \\
& (\therefore r q=p \times 0.6825=0.5738) \quad\left[F r o m\left({ }^{* * *}\right)\right] \\
& f_{2}=\frac{r+1}{1+1} \cdot q \cdot f_{1}=\frac{5}{2} \times 0.1592 \times 0.2869=0.1142 \\
& f_{3}=\frac{r+2}{2+1} \cdot q \cdot f_{2}=\frac{6}{3} \times 0.1592 \times 0.1142=0.0364 \\
& f_{4}=\frac{r+3}{3+1} \cdot q \cdot f_{3}=\frac{7}{4} \times 0.1592 \times 0.0364=0.0101 \\
& f_{5}=\frac{r+4}{4+1} \cdot q \cdot f_{4}=\frac{8}{5} \times 0.1592 \times 0.0101=0.0026
\end{aligned}
$$

\therefore Expected frequencies are: $(\mathrm{N}=400)$

$$
\begin{array}{llllll}
\mathrm{Nf}_{0} & \mathrm{Nf}_{1} & \mathrm{Nf}_{2} & \mathrm{Nf}_{3} & \mathrm{Nf}_{4} & \mathrm{Nf}_{5}
\end{array}
$$

200	114.76	45.68	14.56	4.04	1.04

Observed frequency :	213	128	37	18	3	1
Expected frequency:	200	115	46	14	4	1

Poisson distribution

A random variable X is said to follow a Poisson distribution if it assumes only non-negative values
and its probability mass function is given by:

$$
\mathrm{p}(\mathrm{x}, \lambda)=\mathrm{P}(\mathrm{X}=\mathrm{x})=\left\{\begin{array}{l}
\frac{\mathrm{e}^{-\lambda} \lambda^{x}}{\mathrm{x}!} ; \mathrm{x}=0,1,2, \ldots . . ; \lambda>0 \\
0, \text { otherwise }
\end{array}\right.
$$

Moments of the Poisson distribution

$$
\mu_{1}^{\prime}=E(X)=\sum_{x=0}^{\infty} x p(x, \lambda)=\sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda e^{-\lambda}\left\{\sum_{x=0}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}\right\}=\lambda e^{-\lambda}\left(1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\ldots \cdot\right)=\lambda e^{-\lambda} \cdot e^{\lambda}=\lambda
$$

Hence the mean of the Poisson distribution is λ.

$$
\begin{aligned}
\mu_{2}^{\prime} & =E\left(X^{2}\right)=\sum_{x=0}^{\infty} x^{2} p(x, \lambda)=\sum_{x=0}^{\infty}\{x(x-1)+x\} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} x(x-1) \frac{\lambda^{x}}{x!}+\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda^{2} e^{-\lambda}\left[\sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!}\right]+\lambda=\lambda^{2} e^{-\lambda} e^{\lambda}+\lambda=\lambda^{2}+\lambda \\
\mu_{3}^{\prime} & =E\left(x^{3}\right)=\sum_{x=0}^{\infty} x^{3} p(x, \lambda)=\sum_{x=0}^{\infty}\{x(x-1)(x-2)+3 x(x-1)+x\} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=0}^{\infty} x(x-1)(x-2) \frac{e^{-\lambda} \lambda^{x}}{x!}+3 \sum_{x=0}^{\infty} x(x-1) \frac{e^{-\lambda} \lambda^{x}}{x!}+\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\lambda} \lambda^{3}\left\{\sum_{x=3}^{\infty} \frac{\lambda^{x-3}}{(x-3)!}\right\}+3 e^{-\lambda} \lambda^{2}\left\{\sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!}\right\}+\lambda=e^{-\lambda} \lambda^{3} e^{\lambda}+3 e^{-\lambda} \lambda^{2} e^{\lambda}+\lambda=\lambda^{3}+3 \lambda^{2}+\lambda \\
\mu_{4}^{\prime} & =E\left(x^{4}\right)=\sum_{x=0}^{\infty} x^{4} \cdot p(x, \lambda) \\
& =\sum_{x=0}^{\infty}\{x(x-1)(x-2)(x-3)+6 x(x-1)(x-2)+7 x(x-1)+x\} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\lambda^{4}\left(e^{-\lambda} e^{\lambda}\right)+6 \lambda^{3}\left(e^{-\lambda} e^{\lambda}\right)+7 \lambda^{2}\left(e^{-\lambda} e^{\lambda}\right)+\lambda=\lambda^{4}+6 \lambda^{3}+7 \lambda^{2}+\lambda
\end{aligned}
$$

Coefficients ofskewness and kurtos is are given by :

$$
\beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{\lambda^{2}}{\lambda^{3}}=\frac{1}{\lambda} \quad \text { and } \quad \gamma_{1}=\sqrt{\beta_{1}}=\frac{1}{\sqrt{\lambda}}
$$

Also $\beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=3+\frac{1}{\lambda} \quad$ and $\quad \gamma_{2}=\beta_{2}-3=\frac{1}{\lambda}$
Hence the Poisson distribution is always a skewed distribution.
Proceeding to the limit as $\lambda \rightarrow \infty$ and $\beta_{2}=3$.

Mode of the Poisson distribution

$$
\frac{p(x)}{p(x-1)}=\frac{\frac{e^{-\lambda} \lambda^{x}}{x!}}{\frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}}=\frac{\lambda}{x}
$$

We discuss the following cas es :

Case-I:

When λ is not an integer. Let us suppose that S is the integral part of λ, so that

$$
\lambda=S+f, 0<f<1 .
$$

We get :

$$
\frac{p(x)}{p(x-1)}=\frac{S+f}{x}=\left\{\begin{array}{l}
>1, \text { if } x=0,1, \ldots, S \\
<1, \text { if } x=S+1, S+2, \ldots
\end{array}\right.
$$

$$
\frac{\mathrm{p}(1)}{\mathrm{p}(0)}>1, \frac{\mathrm{p}(2)}{\mathrm{p}(1)}>1, \ldots, \frac{\mathrm{p}(\mathrm{~S}-1)}{\mathrm{p}(\mathrm{~S}-2)}>1, \frac{\mathrm{p}(\mathrm{~S})}{\mathrm{p}(\mathrm{~S}-1)}>1, \quad \text { and } \quad \frac{\mathrm{p}(\mathrm{~S}+1)}{\mathrm{p}(\mathrm{~S})}<1, \frac{\mathrm{p}(\mathrm{~S}+2)}{\mathrm{p}(\mathrm{~S}+1)}<1, \ldots
$$

Combining the above expressions into a single expression, we get

$$
\mathrm{p}(0)<\mathrm{p}(1)<\mathrm{p}(2)<\ldots<\mathrm{p}(\mathrm{~S}-2)<\mathrm{p}(\mathrm{~S}-1)<\mathrm{p}(\mathrm{~S})>\mathrm{p}(\mathrm{~S}+1)>\mathrm{p}(\mathrm{~S}+2)>\ldots,
$$

which shows that $p(S)$ is the maximum value. Hence, in this case, the distribution is unimodal and the
integral part of λ is the unique modal value.

Case-II:

When $\lambda=k$ (say) is an integer. Here, as in case-l, we have

$$
\frac{\mathrm{p}(1)}{\mathrm{p}(0)}>1, \frac{\mathrm{p}(2)}{\mathrm{p}(1)}>1, \ldots, \frac{\mathrm{p}(\mathrm{k}-1)}{\mathrm{p}(\mathrm{k}-2)}>1 \quad \text { and } \frac{\mathrm{p}(\mathrm{k})}{\mathrm{p}(\mathrm{k}-1)}=1, \frac{\mathrm{p}(\mathrm{k}+1)}{\mathrm{pk}}<1, \frac{\mathrm{p}(\mathrm{k}+2)}{\mathrm{p}(\mathrm{k}+1)}<1, \ldots
$$

$\therefore \quad \mathrm{p}(0)<\mathrm{p}(1)<\mathrm{p}(2)<\ldots<\mathrm{p}(\mathrm{k}-2)<\mathrm{p}(\mathrm{k}-1)=\mathrm{p}(\mathrm{k})>\mathrm{p}(\mathrm{k}+1)>\mathrm{p}(\mathrm{k}+2) \ldots$
In this case we have two maximum values, viz., $p(k-1)$ and $p(k)$ and thus the distribution is bimodal
and two modes are at $(k-1)$ and k, i.e., at $(\lambda-1)$ and λ, (since $k=\lambda$).

Moment generating function of the Poisson distribution

$M_{x}(t)=\sum_{x=0}^{\infty} e^{t x} \cdot \frac{e^{-\lambda} \lambda^{x}}{x!}=\sum_{x=0}^{\infty} \frac{e^{-\lambda}\left(\lambda e^{t}\right)^{x}}{x!}=e^{-\lambda}\left\{1+\lambda e^{t}+\frac{\left(\lambda e^{t}\right)^{2}}{2!}+\ldots\right)=e^{-\lambda} \cdot e^{\lambda e^{t}}=e^{\lambda\left(e^{t}-1\right)}$

Cumulants Characteristic function of the Poisson distribution
$\phi_{x}(t)=\sum_{x=0}^{\infty} e^{i x} \cdot p(x, \lambda)=\sum_{x=0}^{\infty} e^{i x} \frac{e^{-\lambda} \lambda x}{x!}=e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(\lambda e^{i t}\right)^{x}}{x!}=e^{-\lambda} e^{\lambda e^{i t}}=e^{\lambda\left(e^{i t}-1\right)}$.

$$
\begin{aligned}
K_{x}(t) & =\log M_{x}(t)=\log \left[e^{\lambda\left(e^{t}-1\right)}\right]=\lambda\left(e^{t}-1\right) \\
& =\lambda\left[\left(1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots+\frac{t^{r}}{r!}+\ldots\right)-1\right]=\lambda\left[t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots+\frac{t^{r}}{r!}+\ldots\right]
\end{aligned}
$$

$$
\kappa_{r}=r^{t h} \text { cumulant }=\text { Coefficient of } \frac{t^{r}}{r!} \text { in } K_{x}(t)=\lambda \Rightarrow \kappa_{r}=\lambda ; r=1,2,3, \ldots
$$

Hence, all cumulants of the Poisson distribution are equal, each being equal to λ. In particular, we
have
Mean $=\kappa_{1}=\lambda, \mu_{2}=\kappa_{2}=\lambda, \mu_{3}=\kappa_{3}=\lambda$ and $\mu_{4}=\kappa_{4}+3 \kappa_{2}^{2}=\lambda+3 \lambda^{2}$

$$
\beta_{1}=\frac{\mu_{3}^{2}}{\mu_{2}^{3}}=\frac{\lambda^{2}}{\lambda^{3}}=\frac{1}{\lambda} \quad \text { and } \quad \beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}=\frac{\lambda+3 \lambda^{2}}{\lambda^{2}}=\frac{1}{\lambda}+3
$$

Ex. In a Poisson frequency distribution, frequency corresponding to 3 successes is $2 / 3$ times frequency corresponding to 4 successes. Find the mean and standard deviation of the distribution.

Sol. Let X be a random variable following Poiss on dis tribution with parameter λ. Then the frequency function is given by
$f(x)=N \cdot p(x)=N P(X=x)=N \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!} ; x=0,1,2, \ldots$.
Putting $x=3$ and 4 in $(1), f(3)=N \cdot \frac{e^{-\lambda} \lambda^{3}}{3!} \quad$ and $\quad f(4)=N \cdot \frac{e^{-\lambda} \lambda^{4}}{4!}$
We are given: $f(3)=\frac{2}{3} f(4) \Rightarrow N \cdot \frac{e^{-\lambda} \lambda^{3}}{3!}=\frac{2}{3} N \cdot \frac{e^{-\lambda} \lambda^{4}}{4!}$
$\Rightarrow \frac{1}{3!}=\frac{2}{3} \cdot \frac{\lambda}{4!} \quad \Rightarrow \lambda=\frac{1}{3!} \times \frac{3}{2} \times 4!=6$.
\Rightarrow Mean of poisson distribution
$\lambda=6$ and s.d. of the

Distribution $=\sqrt{\lambda}=\sqrt{6}$

NEYMAN J. AND PEARS ON, ES LEMMA

This Lemma provides the mostpowerful test of simple hypothesis against a simple altemative
hypothesis. The theorem, known as Neyman Pearson Lemm a, will be provided for density function $f(x, \theta)$ of a single continuous variate and a single parameter. However by regarding xand θ as vectors the proof can be easily generalized for any number of random variables $x_{1}, x_{2}, \ldots, x_{n}$ and any number of parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$.

The variables $x_{1}, x_{2}, \ldots, x_{n}$ occurring in this theorem are understood to represent a random sample of size n from the population, whose density function is $f(x, \theta)$. The lemma is concerned with a simple hypothes is $H_{0}: \theta=\theta_{0}$ and a simple alternative $H_{1}: \theta=\theta_{1}$.

Neyman Pearson Lemma Letk >0 be a constant and W be a critical region of size such that

$$
\begin{align*}
& W=\left\{x \in S: \frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)}>k\right\} \\
& W=\left\{x \in S: \frac{L_{1}}{L_{0}}>k\right\} \tag{1}
\end{align*}
$$

and $\bar{W}=\left\{x \in S: \frac{L_{1}}{L_{0}}<k\right\}$
where L_{0} and L_{1} are the likelihood functions of the sample observations $x=$ ($\left.x_{1}, x_{2}, \ldots, x_{n}\right)$ under H_{0} and H_{1} respectively. Then W is the most powerful critical region of the test hypothesis $H_{0}: \theta=\theta_{0}$ against the alternative $H_{1}: \theta=\theta_{1}$.

Proof. We are given

$$
\begin{equation*}
P\left(x \in W \mid H_{0}\right)=\int_{W} L_{0} d x=\alpha \tag{1a}
\end{equation*}
$$

The power of the region is

$$
\begin{equation*}
P\left(x \in W \mid H_{1}\right)=\int_{W} L_{1} d x=1-\beta,(\text { say }) . \tag{1b}
\end{equation*}
$$

In order to establish the lemma, we have to prove that there exists no other critical region, of size less than or equal to α, which is more powerful than W. Let W_{1} be another critical region of size $\alpha_{1} \leq \alpha$ and power $1-\beta$ so that we have

$$
\begin{equation*}
\mathrm{P}\left(\mathbf{x} \in \mathrm{~W}_{1} \mid \mathrm{H}_{0}\right)=\int_{\mathrm{w}_{1}} \mathrm{~L}_{0} \mathrm{~d} \mathbf{x}=\alpha_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(x \in W_{1} \mid H_{0}\right)=\int_{W_{1}} L_{1} d x=1-\beta_{t} \tag{3}
\end{equation*}
$$

Now we have to prove that $1-\beta \geq 1-\beta$.
Let $W=A \cup C$ and $W_{1}=B \cup C$

(C may be empty, i.e., W and W1 maybe disjoint).
If $\alpha_{1} \leq \alpha$, we have

$$
\begin{array}{ll}
& \int_{W_{1}} L_{0} d x \leq \int_{W} L_{0} d x \\
\Rightarrow \quad & \int_{B \cup C} L_{0} d x \leq \int_{A \cup C} L_{0} d x \\
\Rightarrow \quad & \int_{B} L_{0} d x \leq \int_{A} L_{0} d x \\
\Rightarrow \quad & \int_{A} L_{0} d x \geq \int_{B} L_{0} d x \tag{4}
\end{array}
$$

Since $A \subset W$,
(1) $\Rightarrow \int_{A} L_{1} d x>k \int_{A} L_{0} d x \geq k \int_{B} L_{0} d x$
[Using (4)]

Also [1(a)] implies

$$
\begin{aligned}
& \frac{L_{1}}{L_{0}} \leq k \forall x \in \bar{W} \\
\Rightarrow \quad & \int \bar{W} L_{1} d x \leq k \int \bar{W} L_{0} d x
\end{aligned}
$$

This result als o holds for any subset of \bar{W}, say $\bar{W} \cap W_{4}=B$. Hence

$$
\int_{B} L_{1} d x \leq k \int_{B} L_{0} d x \leq \int_{A} L_{1} d x \quad[\text { From (40) }]
$$

Adding $\int_{\mathrm{C}} \mathrm{L}_{1} \mathrm{dx}$ to both sides, we get

$$
\int_{w_{1}} L_{1} d x \leq \int_{w} L_{1} d x \quad \Rightarrow \quad 1-\beta \geq 1-\beta_{1}
$$

Hence the Theorem.

Unbiased Test and Unbiased Critical Region. Let us consider the testing of $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$: The critical region W and consequently the test based on it is said to be unbiased if the power of the test exceeds the size of the critical region, i.e, if

Power of the test \geq Size of the C.R.

```
\(\Rightarrow \quad 1-\beta \geq \alpha\)
\(\Rightarrow \quad P_{\theta_{1}}(W) \geq P_{\theta_{0}}(W)\)
\(\Rightarrow \quad P\left[\mathbf{x}: \mathbf{x} \in \mathrm{W} \mid \mathrm{H}_{1}\right] \geq \mathrm{P}\left[\mathbf{x}: \mathbf{x} \in \mathrm{W} \mid \mathrm{H}_{0}\right]\)
```

In other words, the critical region W is said to be unbiased if

$$
\Rightarrow \quad P_{\theta}(W) \geq P_{\theta_{0}}(W), \forall \theta\left(\neq \theta_{0}\right) \in \Theta
$$

Theorem. Every most powerful (MP) or uniformly most powerful (UMP) critical region (CR) is necess arly unbiased.
(a) If W be an MPCR of size α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ then it is necessarilyunbiased.
(b) Similarly if W be UMPCR of size α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$ then it is also unbiased

Proof. (a) Since W is the MPCR of size α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$, by Neyman Pearson Lemma, we have; for $\forall k>0$,

$$
W=\left\{\mathbf{x}: L\left(\mathbf{x}, \theta_{1}\right) \geq k L\left(\mathbf{x}, \theta_{0}\right\}=\left\{x: L, k \geq L_{0}\right\}\right.
$$

and $W^{\prime}=\left\{\mathbf{x}: L\left(\mathbf{x}, \theta_{1}\right)<k L\left(\mathbf{x}, \theta_{0}\right\}=\left\{x: L_{1}<k L_{0}\right\}\right.$,
where k is determined so that the size of test is α i.e.,

$$
\begin{equation*}
P_{\theta_{0}}(W)=P\left(x \in W \mid H_{0}\right)=\int_{W} L_{0} d x=\alpha \tag{i}
\end{equation*}
$$

To prove that W is unbiased, we have to show that:
Power of $W \geq \alpha$ i.e., $P_{f}(W) \geq \alpha$
We have : $P_{\theta_{1}}(W)=\int_{W} L_{1} d x \geqslant k \int_{W} L_{0} d x=k \alpha$

$$
\begin{equation*}
\left[\because \text { on } \mathrm{W}, \mathrm{~L}_{1} \geq \mathrm{k} \mathrm{~L}_{0}\right. \text { and using (i)] } \tag{iii}
\end{equation*}
$$

i.e. $\quad P_{\rho}(W) \geq k \alpha, \forall k>0$

Also

$$
\begin{aligned}
1-P_{\theta_{1}}(w) & =1-P\left(x \in W \mid H_{1}\right)=P\left(\mathbf{x} \in W^{\prime} \mid H_{1}\right)=\int_{W} L_{1} d x & & \\
= & k \int_{W^{\prime}} L_{0} d x=k P\left(x: x \in W^{\prime} \mid H_{0}\right) & & {\left[\because \text { on } W^{\prime}, ., L_{1}<k L_{0}\right] } \\
& =k\left[1-P\left(\mathbf{x}: \mathbf{x} \in W \mid H_{0}\right)\right] & & {[\text { Using (i) }] }
\end{aligned}
$$

i.e., $1-P_{\theta_{1}}(W) \leq k(1-\alpha), \forall k>0$

Case (i) $k \geq 1$. if $k \geq 1$, then from (iii), we get :

$$
\begin{aligned}
& P_{\theta_{1}}(W) \geq k \alpha \geq \alpha \\
\Rightarrow \quad & W \text { is unbiased CR. }
\end{aligned}
$$

Case (ii) $0<k<1$. If $0<k<1$, then from (iv), we get :

$$
1-P_{\theta_{1}}(W)<1-\alpha \Rightarrow P_{\theta_{1}}(W)>\alpha \Rightarrow \quad W \text { is unbiased C.R. }
$$

Hence MP critical region is unbiased.
(b) if W is UMPCR of size α then also the above proof holds if for θ we write θ such that $\theta \in \Theta_{1}$. So we have
$\mathrm{P}_{\theta}(\mathrm{W})>\alpha, \forall \theta \in \Theta_{1} \Rightarrow \mathrm{~W}$ is unbiased CR.

Optimum Regions and sufficient Statistics. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample of size n from a
population with p.m.f or p.d.f. $f(x, \theta)$ where the parameter θ may be vector. Let T be sufficient for θ.

Let Tbe a sufficient statistic for θ. Then by Factorization Theorems,

$$
L(x, \theta)=\prod_{i=1}^{n} f\left(x_{i}, \theta\right)=g_{\theta}(t(x)) \cdot h(x)
$$

where $g_{\theta}(t(x))$ is the marginal dis tribution of the statistic $T=t(x)$.
By Neyman Pearson Lemma the MPCR for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$ is given by :

$$
\begin{aligned}
& W=\left\{\mathbf{x}: L\left(x, \theta_{1}\right) \geq k L\left(x, \theta_{0}\right)\right\}, \forall k>0 \\
& \begin{aligned}
W & =\left\{\mathbf{x}: g_{\theta_{1}}(t(x)) \cdot h(x) \geq k \cdot g_{\theta_{0}}(t(x)) \cdot h(x)\right\}, \forall k>0 \\
& =\left\{\mathbf{x}: g_{\theta_{1}}(t(\mathbf{x})) \geq k \cdot g_{\theta_{0}}(t(x))\right\}, \forall k>0
\end{aligned}
\end{aligned}
$$

Hence if $T=t(x)$ is sufficient statistic for θ then the MPCR for the test may be defined in terms of the
marginal dis tribution of $T=t(x)$, rather than the joint distribution of $x_{1}, x_{2}, \ldots, x_{n}$.
Ex. Use the Neyman-Pears on Lemma to obtain the region for testing $\theta=\theta_{0}$ against $\theta=\theta_{1}$ $>\theta_{0}$ and
$\theta=\theta_{1}<\theta_{0}$, in the case of the a normal population $N\left(\theta, \sigma^{2}\right)$, where σ^{2} is known. Hence find the power of the test.

Sol.

Using Neyman-Pearson Lemma, best critical region (B.C.R) is given by (for $k>0$)

$$
\begin{gathered}
\frac{L_{1}}{L_{0}}=\frac{\exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)^{2}\right\}}{\exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}\right\}} \geq k \\
\Rightarrow \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}\right] \geq k \\
\Rightarrow \exp \left[-\frac{n}{2 \sigma^{2}}\left(\theta_{1}^{2}-\theta_{0}^{2}\right)+\frac{1}{\sigma^{2}}\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n} x_{i}\right] \geq k \\
\Rightarrow-\frac{n}{2 \sigma^{2}}\left(\theta_{1}^{2}-\theta_{0}^{2}\right)+\frac{1}{\sigma^{2}}\left(\theta_{1}-\theta_{0}\right) \sum_{i=1}^{n} x_{i} \geq \log k
\end{gathered}
$$

(s ince $\log x$ is an increasing function of x)
$\Rightarrow \bar{x}\left(\theta_{1}-\theta_{0}\right) \geq \frac{\sigma^{2}}{n} \operatorname{logk}++\frac{\theta_{1}^{2}-\theta_{0}^{2}}{2}$
Case (i) If $\theta_{1}>\theta_{0}$, the B.C.R. is determined by the relation (right-tailed test) :

$$
\bar{x}>\frac{\sigma^{2}}{n} \cdot \frac{\log k}{\theta_{1}-\theta_{0}}+\frac{\theta_{1}+\theta_{0}}{2}
$$

$\Rightarrow \quad \bar{x}>\lambda_{1}$, (say).
$\therefore \quad$ B.C.R. is $W=\left\{x: x>\lambda_{1}\right\}$
Case (ii) If $\theta_{1}<\theta_{0}$, the B.C.R. is given by the relation (left handed test)

PPN
 CLASSES

$$
\begin{equation*}
\overline{\mathrm{x}}<\frac{\sigma^{2}}{\mathrm{n}} \cdot \frac{\log \mathrm{l}}{\theta_{1}+\theta_{0}}+\frac{\theta_{1}+\theta_{0}}{2}=\lambda_{2},(\text { say }) . \tag{2}
\end{equation*}
$$

Hence B.C.R. is: $\quad W_{1}=\left\{x: \bar{x} \leq \lambda_{2}\right\}$
The constants λ_{1} and λ_{2} are so chosen as to make the probability of each of the relations (18.10) and (18.11) equal to α when the hypothes is H_{0} is true. The sampling distribution of \bar{x}, when H is true is $N\left(\theta_{i}, \frac{\sigma^{2}}{n}\right),(i=0,1)$. Therefore, the constants λ_{1} and λ_{2} are determined from the relations:

$$
\begin{align*}
& P\left[\bar{x}>\lambda_{1} \mid H_{0}\right]=\alpha \text { and } P\left[\bar{x}<\lambda_{2} \mid H_{0}\right]=\alpha \\
\therefore \quad & P\left(\bar{x}>\lambda_{1} \mid H_{0}\right)=P\left[Z>\frac{\lambda_{1}-\theta_{0}}{\sigma / \sqrt{n}}\right]=\alpha ; Z \sim N(0,1) \\
\Rightarrow & \frac{\lambda_{1}-\theta_{0}}{\sigma / \sqrt{n}}=z_{\alpha} \Rightarrow \lambda_{1}=\theta_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha} \tag{3}
\end{align*}
$$

where z_{α} is the upper α-point of the standard nom al variate given by :

$$
\begin{equation*}
\mathrm{P}\left(Z>Z_{\alpha}\right)=\alpha \tag{i}
\end{equation*}
$$

Also $\mathrm{P}\left(\overline{\mathrm{x}}<\lambda_{2} \mid \mathrm{H}_{0}\right)=\alpha \Rightarrow \mathrm{P}\left(\overline{\mathrm{x}} \geq \lambda_{2} \mid \mathrm{H}_{0}\right)=1-\alpha$

$$
\begin{align*}
& \Rightarrow \quad P\left(Z \geq \frac{\lambda_{2}-\theta_{0}}{\sigma / \sqrt{n}}\right)=1-\alpha \Rightarrow \frac{\lambda_{2}-\theta_{0}}{\sigma / \sqrt{n}}=z_{1-\alpha} \\
& \Rightarrow \quad \lambda_{2}=\theta_{0}+\frac{\sigma}{\sqrt{n}} z_{1-\alpha} \tag{a}
\end{align*}
$$

Power of the test. By definition, the power of the test in case (i) is :

$$
\begin{aligned}
& 1-\beta=P\left[x \in W \mid H_{1}\right]=P\left[\bar{x} \geq \lambda_{1} \mid H_{1}\right] \\
& =P\left(Z \geq \frac{\lambda_{1}-\theta_{1}}{\sigma / \sqrt{n}}\right) \quad\left[\because \text { Under } H_{1}, Z=\frac{\bar{x}-\theta_{1}}{\sigma / \sqrt{n}} \sim N(0,1)\right]
\end{aligned}
$$

$$
\begin{align*}
& =P\left(Z \geq \frac{\theta_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha}-\theta_{1}}{\sigma / \sqrt{n}}\right) \tag{3}\\
& =P\left(Z \geq z_{\alpha}-\frac{\theta_{1}-\theta_{0}}{\sigma / \sqrt{n}}\right) \tag{1}\\
& =1-P\left(Z \leq \lambda_{3}\right) \quad\left\{\lambda_{3}=z_{\alpha}-\frac{\theta_{1}-\theta_{0}}{\sigma / \sqrt{n}}, \text { say. }\right\} \\
& =1-\Phi\left(\lambda_{3}\right),
\end{align*}
$$

where $\Phi($.$) is the distribution function of standard normal variate.$
Similarly in case (ii), $\left(\theta_{1}<\theta_{0}\right)$, the power of the test is

$$
\begin{aligned}
& 1-\beta=P\left(\bar{x}<\lambda_{2} \mid H_{1}\right)=P\left(Z<\frac{\lambda_{2}-\theta_{1}}{\sigma / \sqrt{n}}\right) \\
& =P\left(Z<\frac{\theta_{0}+\frac{\sigma}{\sqrt{n}} z_{1-\alpha}-\theta_{1}}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

[Using (3a)]

$$
=P\left(Z<z_{1-\alpha}+\frac{\theta_{0}-\theta_{1}}{\sigma / \sqrt{n}}\right)=\Phi\left(\lambda_{4}\right), \quad\left(\because \theta_{0}>\theta_{1}\right)
$$

where $\lambda_{4}=z_{1-\alpha}+\frac{\sqrt{n}\left(\theta_{0}-\theta_{1}\right)}{\sigma}=\frac{\sqrt{n}\left(\theta_{0}-\theta_{1}\right)}{\sigma}-z_{\alpha}$

UMP Critical Region. Provided best critical region for testing $H_{0}: \theta=\theta_{0}$ against the hypothesis $\theta=\theta_{1}$,
provided $\theta_{1}>\theta_{0}$ while defines the best critical region for testing $H_{0}: \theta=\theta_{0}$ against H_{1} : $\theta=\theta_{1}$, provided $\theta_{1}<\theta_{0}$. Thus, the best critical region for testing simple hypothes is H_{0} : $\theta=\theta_{0}$ against the simple hypothes is $\theta=\theta_{1}+\mathrm{c}, \mathrm{c}>0$ will not serve as best critical
region for testing simple hypothes is $H_{0}: \theta=\theta_{0}$ against simple altemative hypothes is $H_{1}: \theta=\theta_{0}-c, c>0$.

Hence in this problem, no uniformly most powerful test exists for testing the simple hypothesis, $H_{0}: \theta=\theta_{0}$ against the composite alternative hypothesis, $H_{f}: \theta \neq \theta_{0}$.

However, for each altemative hypothesis, $\mathrm{fH}_{1}: \theta=\theta_{1}>\theta_{0}$ or $\mathrm{H}_{1}: \theta=\theta<\theta_{0}$, a UMP test exists and is given by and respectively.

Remark: In particular, if we take $n=2$, then the B.C.R. for testing $H_{0}: \theta=\theta_{0}$, against $H_{1}: \theta_{1}$ $\left(>\theta_{\partial}\right)$ is given by

$$
\begin{array}{rlrl}
\mathrm{W} & =\left\{x:\left(x_{1}+x_{2}\right) / 2 \geq \theta_{0}+\sigma z_{\alpha} / \sqrt{2}\right\} & \\
& =\left\{x: x_{1}+x_{2} \geq 2 \theta_{0}+\sqrt{2} \sigma z_{\alpha}\right\} & & {\left[\because \bar{x}=\left(x_{1}+x_{2}\right) / 2\right]} \\
& =\left\{x: x_{1}+x_{2} \geq C\right\},(\text { say }) &
\end{array}
$$

where

$$
\begin{equation*}
\mathrm{C}=2 \theta_{0}+\sqrt{2} \sigma z_{\alpha}=2 \theta_{0}+\sqrt{2} \sigma \times 1.645, \text { if } \alpha=0.05 \tag{**}
\end{equation*}
$$

Similarly, the B.C.R. for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}\left(<\theta_{0}\right)$ with $n=2$ and $\alpha=$ 0.05 is given by

$$
\begin{align*}
W_{1} & =\left\{x:\left(x_{1}+x_{2}\right) / 2 \leq \theta_{0}-o z_{\alpha} / \sqrt{2}\right\} \\
& =\left\{x:\left(x_{1}+x_{2}\right) \leqslant 2 \theta_{0}-\sqrt{2} \sigma \times 1.645\right\} \\
& \left.=\left\{x \cdot x_{1}+x_{2} \leq C_{1}\right\}, \text { (say }\right), \tag{}
\end{align*}
$$

where $C_{1}=2 \theta_{0}-\sqrt{2} \sigma z_{\alpha}=2 \theta_{0}-\sqrt{2} \sigma \times 1.645$, if $\alpha=0.05$
The B.C.R. for testing $H_{0}: \theta=\theta_{0}$ against the two tailed alternative
$H_{1}: \theta=\theta_{1}\left(\neq \theta_{0}\right)$, is given by: $W_{2}=\left\{x:\left(x_{1}+x_{2} \geq C\right) \cup\left(x_{1}+x_{2} \leq C_{1}\right)\right\} \quad \ldots(* * * *)$
The regions in $\left({ }^{* *}\right),\left({ }^{* * *}\right)$, and $\left({ }^{* * * *}\right)$ are given by the shaded portions in the following figures (i), (ii) and (iii)
respectively.

Fig. (i)

Fig. (ii)

Fig. (iii)
$\left.\begin{array}{c}\text { BCR } \\ \text { for }\end{array}\right\}: \begin{aligned} & H_{0}: \theta=\theta_{0} \\ & H_{1}: \theta=\theta_{1}\left(>\theta_{0}\right)\end{aligned}$
$\left.\begin{array}{c}\text { BCR } \\ \text { for }\end{array}\right\}: \begin{aligned} & H_{0}: \theta=\theta_{0} \\ & H_{1}: \theta=\theta_{1}\left(<\theta_{0}\right)\end{aligned}$
$\left.\begin{array}{c}\mathrm{BCR} \\ \text { for }\end{array}\right\}: \begin{aligned} & \mathrm{H}_{0}: \theta=\theta_{0} \\ & \mathrm{H}_{1}: \theta=\theta_{1}\left(\neq \theta_{0}\right)\end{aligned}$

Ex. Examine whether a bestcritical region exists for testing the null hypothes is $\mathrm{H}_{0}: \theta=\theta_{0}$ against the alternative hypothes is $\mathrm{H}_{1}: \theta>\theta_{0}$ for the parameter θ of the distribution.

$$
f(x, \theta)=\frac{1+\theta}{(x+\theta)^{2}}, 1 \leq x<\infty
$$

Sol. $\quad \prod_{i=1}^{n} f\left(x_{i}, \theta\right)=(1+\theta)^{n} \prod_{i=1}^{n} \frac{1}{\left(x_{i}+\theta\right)^{2}}$
By Neyman-Pearson Lemma, the B.C.R. fork >0, is given by

$$
\begin{aligned}
& \left(1+\theta_{i}\right)^{n} \prod_{i=1}^{n} \frac{1}{\left(x_{i}+\theta_{1}\right)^{2}} \geq k\left(1+\theta_{0}\right)^{n} \prod_{i=1}^{n} \frac{1}{\left(x_{i}+\theta_{0}\right)^{2}} \\
\Rightarrow \quad & n \log \left(1+\theta_{1}\right)-2 \sum_{i=1}^{n} \log \left(x_{i}+\theta_{1}\right) \geq \log k+n \log \left(1+\theta_{0}\right)-2 \sum_{i=1}^{n} \log \left(x_{i}+\theta_{0}\right) \\
\Rightarrow & 2 \sum_{i=1}^{n} \log \left(\frac{x_{i}+\theta_{0}}{x_{i}+\theta_{1}}\right) \geq \log k+n \log \left(\frac{1+\theta_{0}}{1+\theta_{1}}\right)
\end{aligned}
$$

Thus the test criterion is $\sum_{i=1}^{n} \log \left(\frac{x_{i}+\theta_{0}}{x_{i}+\theta_{1}}\right)$, which cannot be put in the form of a function of the sample observations, not depending on the hypothesis. Hence no B.C.R. exists in this case.

